Saturday, April 24, 2010

QUANTUM COMPUTERS

INTRODUCTION:

Behold your computer. Your computer represents the culmination of years of technological advancements beginning with the early ideas of Charles Babbage (1791-1871) and eventual creation of the first computer by German engineer Konrad Zuse in 1941. Surprisingly however, the high speed modern computer sitting in front of you is fundamentally no different from its gargantuan 30 ton ancestors, which were equipped with some 18000 vacuum tubes and 500 miles of wiring! Although computers have become more compact and considerably faster in performing their task, the task remains the same: to manipulate and interpret an encoding of binary bits into a useful computational result. A bit is a fundamental unit of information, classically represented as a 0 or 1 in your digital computer. Each classical bit is physically realized through a macroscopic physical system, such as the magnetization on a hard disk or the charge on a capacitor. A document, for example, comprised of n-characters stored on the hard drive of a typical computer is accordingly described by a string of 8n zeros and ones. Herein lies a key difference between your classical computer and a quantum computer. Where a classical computer obeys the well understood laws of classical physics, a quantum computer is a device that harnesses physical phenomenon unique to quantum mechanics (especially quantum interference) to realize a fundamentally new mode of information processing.
A quantum computer is one which exploits quantum-mechanical interactions in order to function; this behavior, found in nature, possesses incredible potential to manipulate data in ways unattainable by machines today. The harnessing and organization of this power, however, poses no small difficulty to those who quest after it.
Subsequently, the concept of quantum computing, birthed in the early 80's by physicist Richard Feynman, has existed largely in the realm of theory. Miraculous algorithms which potentially would take a billionth of the time required for classical computers to perform certain mathematical feats, and are implementable only on quantum computers, as such have not yet been realized. A two-bit quantum system, recently developed by a coalition of researchers, constitutes the sole concrete manifestation of the idea.

In a quantum computer, the fundamental unit of information (called a quantum bit or qubit), is not binary but rather more quaternary in nature. This qubit property arises as a direct consequence of its adherence to the laws of quantum mechanics which differ radically from the laws of classical physics. A qubit can exist not only in a state corresponding to the logical state 0 or 1 as in a classical bit, but also in states corresponding to a blend or superposition of these classical states. In other words, a qubit can exist as a zero, a one, or simultaneously as both 0 and 1, with a numerical coefficient representing the probability for each state.


No comments:

Post a Comment